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Abstract

Closed form analytical double-series solution is presented for the multi-dimensional unsteady heat conduction problem in polar coordinates
(2-D cylindrical) with multiple layers in the radial direction. Spatially non-uniform, but time-independent, volumetric heat sources are assumed
in each layer. Separation of variables method is used to obtain transient temperature distribution. In contrast to Cartesian or cylindrical (r, z)
coordinates, eigenvalues in the direction perpendicular to the layers do not explicitly depend on those in the other direction. The implication of
the above statement is that the imaginary eigenvalues are precluded from the solution of the problem. However, radial (transverse) eigenvalues are
implicitly dependent on the angular eigenvalues through the order of the Bessel functions which constitute the radial eigenfunctions. Therefore, for
each eigenvalue in the angular direction, corresponding radial eigenvalues must be obtained. Solution is valid for any combination of homogenous
boundary condition of the first or second kind in the angular direction. However, inhomogeneous boundary conditions of the third kind are applied
in the radial direction. Proposed solution is also applicable to multiple layers with zero inner radius. An illustrative example problem for the
three-layer semi-circular annular region is solved. Results along with the isotherms are shown graphically and discussed.
© 2007 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Multi-layer materials have attracted considerable attention
in modern engineering applications due to added advantage of
combining physical, mechanical and thermal properties of dif-
ferent materials. These layered components find a wide range
of applications in various automotive, space, chemical, civil and
nuclear industries. Therefore, there exists a need to accurately
and efficiently determine the heat flux and temperature distrib-
utions inside the multiple layers.

Recent advances in computational resources for symbolic
manipulations have created renewed interest among researchers
[1–4] in developing exact analytical solutions of problems for
which numerical solutions are currently more prevalent. Al-
though multi-layer heat conduction problems have been stud-
ied in great detail and various solution methods—including

* Corresponding author. Tel.: +1 (217) 244 1781; fax: +1 (217) 333 2906.
E-mail address: ssingh8@uiuc.edu (S. Singh).
1290-0729/$ – see front matter © 2007 Elsevier Masson SAS. All rights reserved.
doi:10.1016/j.ijthermalsci.2007.01.031
orthogonal and quasi-orthogonal expansion technique [5–8],
Laplace transform method [9–11], Green’s function approach
[12–14], finite integral transform technique [15]—are readily
available, there is continued need to explore newly developed
or recently modified methods to solve multi-layer problems for
which exact analytical solutions do not exist. Such solutions
can help improve computational efficiency of computer codes
that currently rely on numerical techniques to solve such prob-
lems.

Salt [16,17] addressed time-dependent heat conduction
problem by orthogonal expansion technique, in a two-dimen-
sional composite slab (Cartesian geometry) with no internal
heat source, subjected to homogenous boundary conditions.
Later, Mikhailov and Ozisik [18] solved the 3-D transient
conduction problem in a Cartesian non-homogenous finite
medium. More recently, Haji-Sheikh and Beck [19] applied
Green’s function approach to develop transient temperature
solutions in a 3-D Cartesian two-layer orthotropic medium
including the effects of contact resistance. Lu et al. [9–11]
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Nomenclature

aimp, bimp coefficients of Bessel functions in transverse
(radial) eigenfunction

Ain,Bin,Cin coefficients in Eq. (2)
Aout,Bout,Cout coefficients in Eq. (3)
C1in,C2in,C1out,C2out coefficients in Eq. (44) dependent on

inner and outer surface boundary conditions
Dmp coefficient in general solution (Eq. (40)) dependent

on initial condition
Emp coefficient in general solution (Eq. (41))
fi(r, θ) initial temperature distribution in the ith layer at

t = 0
gi(r, θ) volumetric heat source distribution in the ith layer
hout outer surface heat transfer coefficient
Jβm Bessel function of the first kind of order βm

ki thermal conductivity of the ith layer
M number of angular eigenfunctions used in the tran-

sient solution
Mss number of angular eigenfunctions used in the steady

state solution
Nrmp norms for r-direction
Nθm norms for θ -direction
P number of radial eigenfunctions used in the solution

corresponding to each angular eigenvalue
r radial coordinate
ri outer radius for the ith layer

Rimp(λimpr) transverse eigenfunctions for the ith layer
t time
Ti(r, θ, t) temperature distribution for the ith layer
Yβm Bessel function of the second kind of order βm

x,y Cartesian coordinates
xij , yij , j = 1,2,3,4 elements for (2n × 2n) matrix in

Eq. (44)

Greek symbols

αi thermal diffusivity of the ith layer
βm eigenvalues in the angular direction
�λ window size for evaluation of radial eigenvalues
ε error
ηm eigenvalues in the y-direction
θ angular coordinate
Θm(βmθ) eigenfunctions in the angular direction
λimp transverse (radial) eigenvalues
νimp eigenvalues in the x-direction
φ angle subtended by the multi-layers
ω1,ω2 coefficients in Θm(βmθ) equation

Subscripts and superscripts

i layer or interface number
ss steady-state
′ differentiation
developed a novel method by combining Laplace transform
method and Separation of variables method to solve multi-
dimensional transient heat conduction problem in a rectangular
and cylindrical multi-layer slab with time-dependent periodic
boundary condition. Treatment in the cylindrical coordinates
is, however, restricted to the r–z coordinates. Eigenfunction
expansion method is applied by de Monte [20] to solve the
unsteady heat conduction problem in a two-dimensional, two-
layer isotropic slab subjected to homogenous boundary condi-
tions.

The brief review of relevant literature is by no means exhaus-
tive. However, a literature survey showed that analytical solu-
tion for unsteady temperature distribution in polar coordinates
with multiple layers has not been developed yet. A large num-
ber of applications in industries, including semi-circular fiber
insulated heaters, multi-layer insulation materials, arc-shaped
magnets (used in automotives), nuclear fuel rods and cylindri-
cal or part-cylindrical building structures would benefit from an
exact solution in multiple layers. This paper presents an analyti-
cal double-series solution for transient heat conduction in polar
coordinates (2-D cylindrical) for multi-layer domain in the ra-
dial direction with spatially non-uniform but time-independent
volumetric heat sources. Inhomogeneous boundary conditions
of the third kind are applied in the direction perpendicular to
the layers. However, only homogenous boundary conditions of
Fig. 1. Schematic representation of n-layers in polar coordinates.

the first or second kind are applicable on θ = constant sur-
faces [20]. Moreover, though the approach is very general and
applicable to complete discs (φ = 2π , see Fig. 1), specific solu-
tion developed in this paper is only applicable to domains with
pie slice geometry (φ < 2π ).
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2. Mathematical formulation

Consider an n-layer composite slab in polar coordinates
(r0 � r � rn and 0 � θ � φ), as shown schematically in Fig. 1.
All the layers are assumed to be isotropic in thermal properties
and are in perfect thermal contact. Let ki and αi be the temper-
ature independent thermal conductivity and thermal diffusivity
of the ith layer. Initially, at t = 0, the ith layer is at a specified
temperature fi(r, θ). For t > 0, homogenous boundary condi-
tions of either first or second kind are applied to the angular
surfaces at θ = 0 and θ = φ. All three kinds of boundary con-
ditions are applicable to the inner (i = 1, r = r0) and the outer
(i = n, r = rn) radial surfaces. In addition, time independent
heat sources gi(r, θ) are switched on in each layer at t = 0.

Under these assumptions, the governing heat conduction
equation, along with the boundary and initial conditions, are
as follows:

Governing equation:

1

αi

∂Ti

∂t
(r, θ, t) = 1

r

∂

∂r

(
r
∂Ti

∂r
(r, θ, t)

)
+ 1

r2

∂2Ti

∂θ2
(r, θ, t) + gi(r, θ)

ki

ri−1 � r � ri, 1 � i � n (1)

Boundary conditions:

• Inner surface of 1st layer (i = 1)

Ain
∂T1

∂r
(r0, θ, t) + BinT1(r0, θ, t) = Cin (2)

• Outer surface of nth layer (i = n)

Aout
∂Tn

∂r
(rn, θ, t) + BoutTn(rn, θ, t) = Cout (3)

• θ = 0 surface (i = 1,2, . . . , n)

Ti(r, θ = 0, t) = 0 or
∂Ti

∂θ
(r, θ = 0, t) = 0 (4)

• θ = φ surface (i = 1,2, . . . , n)

Ti(r, θ = φ, t) = 0 or
∂Ti

∂θ
(r, θ = φ, t) = 0 (5)

• Inner interface of ith layer (i �= 1)

Ti(ri−1, θ, t) = Ti−1(ri−1, θ, t) (6)

ki

∂Ti

∂r
(ri−1, θ, t) = ki−1

∂Ti−1

∂r
(ri−1, θ, t) (7)

• Outer interface of ith layer (i �= n)

Ti(ri , θ, t) = Ti+1(ri , θ, t) (8)

ki

∂Ti

∂r
(ri , θ, t) = ki+1

∂Ti+1

∂r
(ri, θ, t) (9)

Initial condition:

Ti(r, θ, t = 0) = fi(r, θ) (10)

It is to be noted that boundary conditions either of the first,
second or third kind can be imposed at r = r0 and r = rn by
choosing the coefficients in Eqs. (2) and (3) appropriately. Fur-
thermore, multiple layers with zero inner radius (r0 = 0) can be
simulated by assigning zero values to constants Bin and Cin in
Eq. (2).

3. Solution methodology

In order to apply the separation of variables method,
which is only applicable to homogenous problems, the non-
homogenous problem has to be split into: (1) homogenous tran-
sient problem, and (2) non-homogenous steady state problem.
This is accomplished by rewriting Ti(r, θ, t) in the governing
equations (1)–(10) as T i(r, θ, t) + Tss,i (r, θ), where T i(r, θ, t)

is the “complementary transient” part and Tss,i (r, θ) is the
steady state part of the solution.

3.1. Homogenous transient problem

Homogenized “complementary transient” equations corre-
sponding to Eqs. (1)–(10) are as follows:

Governing equation:

1

αi

∂T i

∂t
(r, θ, t) = 1

r

∂

∂r

(
r
∂T i

∂r
(r, θ, t)

)
+ 1

r2

∂2T i

∂θ2
(r, θ, t)

ri−1 � r � ri, 1 � i � n (11)

Boundary conditions:

• Inner surface of 1st layer (i = 1)

Ain
∂T 1

∂r
(r0, θ, t) + BinT 1(r0, θ, t) = 0 (12)

• Outer surface of nth layer (i = n)

Aout
∂T n

∂r
(rn, θ, t) + BoutT n(rn, θ, t) = 0 (13)

• θ = 0 surface (i = 1,2, . . . , n)

T i(r, θ = 0, t) = 0 or
∂T i

∂θ
(r, θ = 0, t) = 0 (14)

• θ = φ surface (i = 1,2, . . . , n)

T i(r, θ = φ, t) = 0 or
∂T i

∂θ
(r, θ = φ, t) = 0 (15)

• Inner interface of ith layer (i �= 1)

T i(ri−1, θ, t) = T i−1(ri−1, θ, t) (16)

ki

∂T i

∂r
(ri−1, θ, t) = ki−1

∂T i−1

∂r
(ri−1, θ, t) (17)

• Outer interface of ith layer (i �= n)

T i(ri , θ, t) = T i−1(ri , θ, t) (18)

ki

∂T i

∂r
(ri , θ, t) = ki−1

∂T i−1

∂r
(ri, θ, t) (19)

Initial condition:

T i(r, θ, t = 0) = fi(r, θ) − Tss,i (r, θ) (20)
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3.2. Inhomogeneous steady state problem

Inhomogeneous steady state equations corresponding to
Eqs. (1)–(10) are as follows:

Governing equation:

1

r

∂

∂r

(
r
∂Tss,i

∂r
(r, θ)

)
+ 1

r2

∂2Tss,i

∂θ2
(r, θ) + gi(r, θ)

ki

= 0

ri−1 � r � ri , 1 � i � n (21)

Boundary conditions:

• Inner surface of 1st layer (i = 1)

Ain
∂Tss,1

∂r
(r0, θ) + BinTss,1(r0, θ) = Cin (22)

• Outer surface of nth layer (i = n)

Aout
∂Tss,n

∂r
(rn, θ) + BoutTss,n(rn, θ) = Cout (23)

• θ = 0 surface (i = 1,2, . . . , n)

Tss,i (r, θ = 0) = 0 or
∂Tss,i

∂θ
(r, θ = 0) = 0 (24)

• θ = φ surface (i = 1,2, . . . , n)

Tss,i (r, θ = φ) = 0 or
∂Tss,i

∂θ
(r, θ = φ) = 0 (25)

• Inner interface of ith layer (i �= 1)

Tss,i (ri−1, θ) = Tss,i−1(ri−1, θ) (26)

ki

∂Tss,i

∂r
(ri−1, θ) = ki−1

∂Tss,i−1

∂r
(ri−1, θ) (27)

• Outer interface of ith layer (i �= n)

Tss,i (ri , θ) = Tss,i+1(ri , θ) (28)

ki

∂Tss,i

∂r
(ri , θ) = ki+1

∂Tss,i+1

∂r
(ri, θ) (29)

4. Solution to the homogenous transient problem

4.1. Separation of variables

Substituting the product form for temperature T i(r, θ, t),

T i(r, θ, t) = Ri(r)Θi(θ)Γi(t) (30)

in Eq. (11), and then applying separation of variables, yield the
following ODEs:

1

r

d

dr
r

dRi

dr
+

(
−β2

i

r2
+ λ2

i

)
Ri = 0 (31)

d2Θi

dθ2
+ β2

i Θi = 0 (32)

1

αi

dΓi

dt
+ λ2

i Γi = 0 (33)

where λ2 and β2 are constants of separation.
i i
4.2. General solution

For heat flux to be continuous at the layer interfaces, namely
Eqs. (17) and (19), for all values of t [7,16,20,21],

λimp = λ1mp

√
α1/αi, i = 1,2, . . . , n (34)

and also

Θi = Θ ⇒ βi = β, i = 1,2, . . . , n (35)

Now, the eigenfunctions Rimp(λimpr) corresponding to
eigenvalue problem in the r-direction are given by:

Rimp(λimpr) = aimpJβm(λimpr) + bimpYβm(λimpr) (36)

Orthogonality condition for the r-direction eigenfunctions,
which is similar to that in [21], is:

n∑
i=1

ki

αi

ri∫
ri−1

rRimp(λimpr)Rimq(λimqr)dr

=
[

0 if p �= q

Nrmp if p = q
(37)

Proof of the above condition is given in Appendix A.
Similarly, eigenfunctions Θm(βmθ) corresponding to the

eigenvalue problem in the θ -direction are given by:

Θm(βmθ) = ω1 sin(βmθ) + ω2 cos(βmθ) (38)

where constants ω1, ω2 and βm are listed in Table 1 for different
combinations of boundary conditions at θ = 0 and θ = φ edges.

Orthogonality condition for the θ -direction eigenfunctions
is:
φ∫

0

Θm(βmθ)Θl(βlθ)dθ =
[

0 if m �= l

Nθm if m = l
(39)

In view of the equations listed before, a general solution for
Eq. (11) may be considered as:

T i(r, θ, t) =
∞∑

m=1

∞∑
p=1

Dmpe−αiλ
2
impt

Rimp(λimpr)Θm(βmθ)

(40)

It should be noted here that the formulation given above is
valid only for polar angle φ < 2π . For the case of periodic
boundary conditions, which is for φ = 2π , the general solution
will be the sum of two double series solutions and may not be
directly extracted from the analytical solution obtained in this
paper.

Table 1
ω1, ω2 and βm for different combinations of boundary conditions at θ = 0 and
θ = φ surfaces

BC at θ = 0 BC at θ = φ ω1 ω2 βm

T i(r, θ = 0, t) = 0 T i(r, θ = φ, t) = 0 1 0 mπ
φ

∂T i
∂θ

(r, θ = 0, t) = 0 ∂T i
∂θ

(r, θ = φ, t) = 0 0 1 mπ
φ

T i(r, θ = 0, t) = 0 ∂T i
∂θ

(r, θ = φ, t) = 0 1 0 2m−1
2

π
φ

∂T i
∂θ

(r, θ = 0, t) = 0 T i(r, θ = φ, t) = 0 0 1 2m−1
2

π
φ
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C1in C2in 0 0 . . . 0 0 0 0 . . . 0 0 0 0
x11 x12 x13 x14 . . . 0 0 0 0 . . . 0 0 0 0
y11 y12 y13 y14 . . . 0 0 0 0 . . . 0 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 . . . xi1 xi2 xi3 xi4 . . . 0 0 0 0
0 0 0 0 . . . yi1 yi2 yi3 yi4 . . . 0 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 . . . 0 0 0 0 . . . xn−1,1 xn−1,2 xn−1,3 xn−1,4
0 0 0 0 . . . 0 0 0 0 . . . yn−1,1 yn−1,2 yn−1,3 yn−1,4
0 0 0 0 . . . 0 0 0 0 . . . 0 0 C1out C2out

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1mp

b1mp

. . .

. . .

aimp

bimp

. . .

. . .

anmp

bnmp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
. . .

. . .

0
0
. . .

. . .

0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(44)
4.3. Absence of imaginary radial eigenvalues

In general, for multi-layer time-dependent heat conduction
problems in Cartesian coordinates, transverse eigenvalues may
be imaginary. Same is true for 2-D (r, z) cylindrical coordinates.
The eigenvalues are imaginary due to the explicit dependence
of the transverse eigenvalues on those in the remaining di-
rection(s). For example, in 2-D Cartesian two-layer (layers in
x-direction) homogenous heat conduction problem, general so-
lution in the ith layer is as follows [16,19,20]:

Ti(x, y, t) =
∞∑

m=1

∞∑
p=1

Empe−αi(ν
2
imp+η2

m)t
Ximp(νimpx)Ym(ηmy)

(41)

For heat flux to be continuous at the interface, for all values
of t

α1
(
ν2

1mp + η2
m

) = α2
(
ν2

2mp + η2
m

)
(42)

which implies,

ν2mp =
√

α1

α2
ν2

1mp +
(

α1

α2
− 1

)
η2

m (43)

Clearly, above relation may result in either real or imaginary
transverse eigenvalues [16,20].

However, in the present case, as shown in Section 4.2, sim-
ilar considerations led to Eq. (34), which is similar to what
has been established for 1-D multi-layer, time-dependent prob-
lems and eliminates the possibility of imaginary eigenvalues. It
should be noted that, though there is no explicit dependence
between radial and angular eigenvalues, order of the Bessel
functions constituting radial eigenfunctions is determined by
the angular eigenvalues. Hence, the radial eigenvalues implicitly
depend on the angular eigenvalues. Moreover, unlike in Carte-
sian coordinates, this implicit dependence does not vanish even
if α1 = αi (i �= 1). In fact, it exists even for single-layer prob-
lems.

4.4. Radial eigencondition

Application of the interface conditions (16)–(19) and bound-
ary conditions (12), (13) to the transverse eigenfunction
Rimp(λimpr) yields, for each integer value of m, the (2n × 2n)

matrix equation (44) shown at the top of this page, where

C1in = AinJ
′
βm

(λ1mpr0) + BinJβm(λ1mpr0)

C2in = AinY
′
β (λ1mpr0) + BinYβm(λ1mpr0)
m
xi1 = Jβm(λimpri)

xi2 = Yβm(λimpri)

xi3 = −Jβm(λi+1,mpri)

xi4 = −Yβm(λi+1,mpri)

yi1 = kiJ
′
βm

(λimpri)

yi2 = kiY
′
βm

(λimpri)

yi3 = −ki+1J
′
βm

(λi+1,mpri)

yi4 = −ki+1Y
′
βm

(λi+1,mpri)

C1out = AoutJ
′
βm

(λnmprn) + BoutJβm(λnmprn)

C2out = AoutY
′
βm

(λnmprn) + BoutYβm(λnmprn)

and prime (′) denotes differentiation.
In the above matrix equation, λimp (i �= 1) may be writ-

ten in terms of λ1mp using Eq. (34). Subsequently, transverse
eigencondition can be obtained by setting the determinant of
the (2n×2n) coefficient matrix in Eq. (44) equal to zero. Roots
of which, in turn, yield the infinite number of eigenvalues λ1mp

corresponding to the first layer for each integer value of m.
(Note that this step to find the eigenvalues can be reduced to
setting the determinant of an (n × n)—instead of (2n × 2n)—
matrix equal to zero. This can be done by applying the continu-
ity of heat flux at the interfaces to eliminate one of the constants
in Eq. (36).)

4.5. Determination of coefficients aimp and bimp

Coefficients aimp and bimp in the radial eigenfunction
Rimp(λimpr) (Eq. (36)) may be obtained from the following
recurrence relationship, obtained from the ith interface condi-
tion (see Eqs. (16), (17)), valid for i ∈ [1, n − 1],(

ai+1,mp

bi+1,mp

)
=

(
Jβm(λi+1,mpri) Yβm(λi+1,mpri)

ki+1J
′
βm

(λi+1,mpri) ki+1Y
′
βm

(λi+1,mpri)

)−1

×
(

Jβm(λimpri) Yβm(λimpri)

kiJ
′
βm

(λimpri) kiY
′
βm

(λimpri)

)(
aimp

bimp

)
(45)

where b1mp = −C1in
C2in

a1mp and a1mp is arbitrary.
Clearly, two sets of eigenfunctions obtained with different

a1mp are proportional to each other and are equally valid so-
lutions of the radial eigenvalue problem. Moreover, after the
introduction of Dmp in the general solution, there is no need to
retain a1mp as a separate constant. (The above discussion is in
fact true for any eigenvalue problem.)
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4.6. Determination of coefficient Dmp

Coefficient Dmp in Eq. (40) may be obtained by applying the
initial condition (20) and then making use of the orthogonality
conditions in the radial and angular directions, as follows:

Dmp = 1

NθmNrmp

n∑
i=1

ki

αi

φ∫
0

ri∫
ri−1

rRimp(λimpr)

× Θm(βmθ)T i(r, θ, t = 0)dr dθ (46)

5. Solution to the inhomogeneous steady state problem

The inhomogeneous steady state problem is solved using
eigenfunction expansion method. The steady state temperature
distribution, governed by Eq. (21), may be written as a general-
ized Fourier series in terms of angular eigenfunctions,

Tss,i (r, θ) =
∞∑

m=1

T̂im(r)Θm(βmθ)

ri−1 � r � ri , 1 � i � n (47)

Substituting Eq. (47) in Eq. (21) leads to an ODE for T̂im(r),

1

r

d

dr

(
r

dT̂im(r)

dr

)
− β2

m

r2
+ ĝim(r)

ki

= 0

ri−1 � r � ri , 1 � i � n (48)

where the source term gi(r, θ) is expanded in a generalized
Fourier series as:

gi(r, θ) =
∞∑

m=1

ĝim(r)Θm(βmθ)

ri−1 � r � ri , 1 � i � n (49)

where

ĝim(r) = 1

Nθm

φ∫
0

gi(r, θ)Θm(βmθ)dθ (50)

Similarly, Cin and Cout in Eqs. (22) and (23) may be ex-
panded in a generalized Fourier series to yield boundary con-
ditions for ODE given in Eq. (48). Interface conditions for
Tss,i (r, θ), given in Eqs. (26)–(29), are also valid for T̂im(r).

Solution for Eq. (48) may be written as:

T̂im(r) = Ass,i r
m + Bss,i r

−m + fp(r) (51)

where fp(r) is particular integral that can be obtained by ap-
plication of method of variation of parameters or method of
undetermined coefficients. Constants Ass,i and Bss,i may be
evaluated using boundary and interface conditions for T̂im(r).
It should be noted that Bss,1 = 0 when r0 = 0.

6. Illustrative example

A three-layer semi-circular annular region (r0 � r � r3,
0 � θ � π ; see Fig. 2) is initially at a uniform zero tempera-
ture. For time t > 0, the end surfaces for each layer at angle
Fig. 2. Three layer semi-circular annular region example problem.

θ = 0 and θ = π as well as inner radial surface at r = r0 is
maintained isothermal at zero temperature, while heat is con-
vected into ambient, also at zero temperature, at the outer radial
surface at r = r3. These boundary conditions lead to Ain = 0,
Bin = 1, Aout = k3 and Bout = hout. In addition, uniformly dis-
tributed heat source of magnitude S is turned on at t = 0 in the
first (innermost) layer.

Parameter values used for this problem are,

k2/k1 = 2, k3/k1 = 4; α2/α1 = 4, α3/α1 = 9

r1/r0 = 2, r2/r0 = 4, r3/r0 = 6, Biout ≡ houtr0/k1 = 1

It should be noted that, in the results that follow, r , t , and
Ti(r, θ, t) are in the units of r0, r

2
0 /α1 and Sr2

0/k1, respectively.
Moreover, for the boundary conditions chosen for this problem,
ω1 = 1, ω2 = 0 and βm = m (see Table 1).

Steady-state solution for this particular problem can easily
be obtained as,

Tss,i (r, θ) =
∞∑

m=1

T̂im(r) sin(mθ), i = 1,2,3 (52)

where

T̂1m(r) = Ass,1r
m + Bss,1r

−m − 2

π

(
1 − cos(mπ)

m(4 − m2)

)
Sr2

k1
(53)

T̂im(r) = Ass,i r
m + Bss,i r

−m, i �= 1 (54)

The constants Ass,i and Bss,i (i = 1,2 and 3) in Eqs. (53) and
(54) can be evaluated by applying the steady-state interface and
boundary conditions, which results in the matrix equation (55)

(see the top of the next page) where cs = 2
π
(

1−cos(mπ)

m(4−m2)
) S
k1

.

As in Eq. (40), double series solution for T i(r, θ, t) with
βm = m, can be written as:

T i(r, θ, t) =
∞∑

m=1

∞∑
p=1

Dmpe−α1λ
2
1mpt(

aimpJm(λimpr)

+ bimpYm(λimpr)
)

sin(mθ) (56)
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⎡⎢⎢⎢⎢⎢⎢⎣

Ass,1
Bss,1
Ass,2
Bss,2
Ass,3
Bss,3

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

(Ainm + Binr0)rm−1
0 (−Ainm + Binr0)r−m−1

0 0 0 0 0
rm
1 r−m

1 −rm
1 −r−m

1 0 0
0 0 rm

2 r−m
2 −rm

2 −r−m
2

k1mrm−1
1 −k1mr−m−1

1 −k2mrm−1
1 k2mr−m−1

1 0 0

0 0 k2mrm−1
2 −k2mr−m−1

2 −k3mrm−1
2 k3mr−m−1

2
0 0 0 0 (Aoutm + Boutr3)rm−1

3 (−Aoutm + Boutr3)r−m−1
3

⎤⎥⎥⎥⎥⎥⎥⎥⎦

−1

×

⎡⎢⎢⎢⎢⎢⎢⎣

(2Ain + Binr0)r0cs

csr
2
1

0
2k1r1cs

0
0

⎤⎥⎥⎥⎥⎥⎥⎦ (55)

Table 2
Transverse eigenvalues λ1mp for the example problem

p m = 1 m = 3 m = 5 m = 7 m = 9 m = 11 m = 13 m = 15 m = 17 m = 19

1 1.07454 2.08172 3.20819 4.33447 5.44768 6.54132 7.61439 8.67085 9.71599 10.7540
2 1.96189 2.72329 3.81788 4.99373 6.15741 7.27307 8.36040 9.45180 10.5476 11.6430
3 3.08567 3.57869 4.36917 5.29757 6.30213 7.37580 8.48674 9.59523 10.6948 11.7863
4 4.28626 4.71199 5.48113 6.47357 7.56946 8.68970 9.81260 10.9399 12.0723 13.2075
5 5.35901 5.68274 6.28854 7.11844 8.11952 9.23805 10.4118 11.5951 12.7682 13.9245
6 6.49831 6.78533 7.32467 8.06103 8.93373 9.88792 10.8843 11.9024 12.9351 13.9832
7 7.75062 7.99203 8.45839 9.12359 9.95917 10.9342 12.0077 13.1260 14.2440 15.3532
8 8.92835 9.12530 9.50822 10.0586 10.7550 11.5775 12.5102 13.5435 14.6627 15.8317
9 10.0234 10.2121 10.5813 11.1160 11.7965 12.6001 13.5009 14.4704 15.4808 16.5105

10 11.1955 11.3629 11.6919 12.1723 12.7913 13.5360 14.3950 15.3579 16.4107 17.5296

∣∣∣∣∣∣∣∣∣∣∣∣

Jm(λ1mp) Ym(λ1mp) 0 0 0 0
Jm(2λ1mp) Ym(2λ1mp) −Jm(λ1mp) −Ym(λ1mp) 0 0

y11 y12 y13 y14 0 0
0 0 Jm(2λ1mp) Ym(2λ1mp) −Jm( 4

3 λ1mp) −Ym( 4
3 λ1mp)

0 0 y21 y22 y23 y24
0 0 0 0 C1out C2out

∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (57)
Application of the interface and boundary conditions to
transverse eigenfunction yields the following eigencondition in
a (6 × 6) determinant form (57) (see above), where

y11 = y21 = λ1mp

2

(
Jm−1(2λ1mp) − Jm+1(2λ1mp)

)
y12 = y22 = λ1mp

2

(
Ym−1(2λ1mp) − Ym+1(2λ1mp)

)
y13 = −λ1mp

2

(
Jm−1(λ1mp) − Jm+1(λ1mp)

)
y14 = −λ1mp

2

(
Ym−1(λ1mp) − Ym+1(λ1mp)

)
y23 = −2λ1mp

3

(
Jm−1

(
4

3
λ1mp

)
− Jm+1

(
4

3
λ1mp

))
y24 = −2λ1mp

3

(
Ym−1

(
4

3
λ1mp

)
− Ym+1

(
4

3
λ1mp

))
C1out = Jm(2λ1mp) + 4

3
y11

C2out = Ym(2λ1mp) + 4

3
y12

There exists infinite number of transverse eigenvalues (in-
dexed by p) related to the first layer, λ1mp , for each integer
value of m. These eigenvalues λ1mp are calculated by solv-
ing the above transcendental eigencondition with the help of
Mathematica 5.1, a commercial mathematical package. Result-
ing eigenvalues for various values of m and p are shown in
Table 2. Roots are searched in a user-defined window of size �λ

using in-built functions. Successive eigenvalues are obtained by
marching forward in the steps of �λ starting from zero. Since
the roots are not distributed uniformly, the window size has to
be kept very small in order not to miss any eigenvalue. More-
over, resulting eigenvalues are verified graphically to make sure
that all eigenvalues within the interval were indeed captured.
The above-mentioned scheme is not very efficient because a
very small window size is required. Several methods have been
developed so far to efficiently compute eigenvalues for 2-D
Cartesian multi-layer problems [19,20]. Further research is nec-
essary to develop an efficient and automated scheme for the
current problem, which also guarantees that all eigenvalues are
captured.

7. Results

For this particular problem, even integer values of m yield
trivial values for Dmp . Therefore, transverse eigenvalues are ob-
tained only for the odd integer values of m. The infinite series
given in Eq. (56) is truncated at p = P and m = M , leading to,
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(a)

(b)

Fig. 3. Error in transient temperature distribution at t = 0 in radial direction at various angular positions: (a) θ = π/8, (b) θ = π/4, (c) θ = 3π/8, (d) θ = π/2.
T i(r, θ, t) =
M∑

m=1

P∑
p=1

Dmpe−α1λ
2
1mpt(

aimpJm(λimpr)

+ bimpYm(λimpr)
)

sin(mθ)

+ εi(r, θ, t,M,P ) (58)

where εi(r, θ, t,M,P ) is the truncation error.
Since λ1mp increases with increasing m and p, it is obvious
that for a given M and P , maximum truncation error occurs at
t = 0. Moreover, since T i(r, θ, t = 0) = −Tss,i (r, θ), therefore,

εi(r, θ, t = 0,M,P ) = Tss,i (r, θ)

+
M∑

m=1

P∑
p=1

Dmp

(
aimpJm(λimpr) + bimpYm(λimpr)

)
sin(mθ)

(59)
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(c)

(d)

Fig. 3. Continued.
)
However, Tss,i (r, θ) is also evaluated as a series solution,
hence, the above equation can be written as:

εi(r, θ, t = 0,M,P ) =
(

Mss∑
m=1

T̂im(r) sin(mθ) + εss,i (r, θ,Mss)

)

+
M∑ P∑

Dmp

(
aimpJm(λimpr)
m=1 p=1
+ bimpYm(λimpr)
)

sin(mθ) (60

A good estimate of εi(r, θ, t = 0,M,P ) may be obtained
only if εss,i (r, θ,Mss) 	 εi(r, θ, t = 0,M,P ). The above re-
quirement may be fulfilled by taking a large number of terms in
the steady state series solution so as to minimize the steady state
truncation error. Since the maximum difference between steady
state temperatures obtained with Mss = 45 and Mss = 50 is of
the order of 10−5, therefore, series is truncated at Mss = 50.
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Fig. 4. Transient isotherms in three-layer annular region.
Plots of truncation error εi(r, θ, t = 0) for various values of
M and P are shown in Fig. 3. Though plots are presented only
for θ = π/8,π/4,3π/8 and π/2, it has been ensured that trun-
cation error is of the same order for all values of θ . The L−1 %
errors evaluated for the cases shown in Fig. 3, in the order of in-
creasing M and P , are 1.33%, 0.84%, 0.63%, and 0.49%. Since
the truncation error for M = 19 and P = 10 may be considered
reasonably small, therefore, the series is truncated at these val-
ues of M and P .

Isotherms in the three-layer, semicircular, annular region are
shown for different t values in Fig. 4. Additionally, angular and
radial temperature variations are shown in Figs. 5 and 6, respec-
tively. The steady-state solution is also shown for all the cases.

It may be noted that unsteady isotherms (in Fig. 4) and radial
temporal variation curves (in Fig. 6) show jump in derivative at
the layer interfaces due to step change in material properties.
As heat source is turned on (at t = 0) in the first (innermost)
layer, temperature grows rapidly with-in the first layer and then
slowly decays in subsequent layers to satisfy convective bound-
ary condition at the outside surface. Maximum temperature in
the layered material is always found at θ = π/2 and near the
mid-section in the radial direction of the first layer.

8. Conclusions

In this paper, a closed form analytical solution to the two-
dimensional, transient, heat conduction problem in polar coor-
dinates, with multiple layers in the radial direction, is presented.
Each layer can have spatially varying but time-independent vol-
umetric heat source. Proposed solution is valid for any combi-
nation of homogenous boundary condition of the first or second
kind in the angular direction. However, inhomogeneous bound-
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Fig. 5. Transient temperature distribution in angular direction at mid-sections
of the three layers: (a) r = 1.5, (b) r = 3.0, (c) r = 5.0.

ary condition of the first, second or the third kind can be applied
in the radial direction. Proposed solution is also applicable to
the layered-structures with r0 = 0.

It is noted that solution of multi-layer, two-dimensional heat
conduction problem in polar coordinates is not analogous to the
corresponding problem in multi-dimensional Cartesian coordi-
nates (or 2-D cylindrical r–z coordinates). In the polar coordi-
nates, dependence of the eigenvalues in the transverse direction
on those in the other direction is not explicit. Absence of ex-
plicit dependence leads to a complete solution which does not
have imaginary transverse eigenvalues. Numerical evaluation of
the double series solution shows that a reasonable number of
terms are sufficient to obtain results with acceptable errors for
engineering applications.

Appendix A

A.1. Proof of the orthogonality condition

Let Rimp and Rimq be transverse eigenfunctions satisfying
Eq. (31), thus

1

r

d

dr

(
r

dRimp

dr

)
+

(
−β2

m

r2
+ λ2

imp

)
Rimp = 0 (A.1)

1

r

d

dr

(
r

dRimq

dr

)
+

(
−β2

m

r2
+ λ2

imq

)
Rimq = 0 (A.2)

Boundary and interface conditions for T i(r, θ, t) (Eqs. (12)–
(19)) are also valid for transverse eigenfunctions.

Since αiλ
2
imp = α1λ

2
1mp (from Eq. (34)), we can write

1

r

d

dr

(
r

dRimp

dr

)
+

(
−β2

m

r2
+ α1λ

2
1mp

αi

)
Rimp = 0 (A.3)

Similarly,

1

r

d

dr

(
r

dRimq

dr

)
+

(
−β2

m

r2
+ α1λ

2
1mq

αi

)
Rimq = 0 (A.4)

Multiplying (A.3) by Rimq and (A.4) by Rimp and subtract-
ing, we get

Rimq

1

r

d

dr

(
r

dRimp

dr

)
− Rimp

1

r

d

dr

(
r

dRimq

dr

)
+ α1

(
λ2

1mp

αi

− λ2
1mq

αi

)
RimpRimq = 0 (A.5)

Now, operating with
∫ ri
ri−1

r dr

ri∫
ri−1

(
Rimq

d

dr

(
r

dRimp

dr

))
dr −

ri∫
ri−1

(
Rimp

d

dr

(
r

dRimq

dr

))
dr

+ α1

ri∫
ri−1

(
λ2

1mp

αi

− λ2
1mq

αi

)
rRimpRimq dr = 0 (A.6)

Applying integration by parts twice on the first integral in
the above equation,
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(a)

(b)

Fig. 6. Transient temperature distribution in radial direction at θ = π/2 and θ = π/4.
ri∫
ri−1

(
Rimq

d

dr

(
r

dRimp

dr

))
dr

=
[
rRimq

dRimp

dr
− rRimp

dRimq

dr

]r=ri

r=ri−1

+
ri∫

r

(
Rimp

d

dr

(
r

dRimq

dr

))
dr (A.7)
i−1
Substituting Eq. (A.7) in Eq. (A.6) gives

[
rRimq

dRimp

dr
− rRimp

dRimq

dr

]r=ri

r=ri−1

+ α1

ri∫
r

(
λ2

1mp

αi

− λ2
1mq

αi

)
rRimpRimq dr = 0 (A.8)
i−1
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Multiplying the above equation by ki and then summing over
all i, we get
n∑

i=1

[
kirRimq

dRimp

dr
− kirRimp

dRimq

dr

]r=ri

r=ri−1

+
n∑

i=1

α1ki

αi

ri∫
ri−1

(
λ2

1mp − λ2
1mq

)
rRimpRimq dr = 0 (A.9)

Applying interface conditions (Eqs. (16)–(19)),[
knrRnmq

dRnmp

dr
− knrRnmp

dRnmq

dr

]
r=rn

−
[
k1rR1mq

dR1mp

dr
− k1rR1mp

dR1mq

dr

]
r=r0

+
n∑

i=1

α1ki

αi

ri∫
ri−1

(
λ2

1mp − λ2
1mq

)
rRimpRimq dr = 0 (A.10)

Now, from outer layer boundary condition (Eq. (13)), we
have,[
Aout

dRnmp

dr
+ BoutRnmp

]
r=rn

= 0 (A.11)

Similarly,[
Aout

dRnmq

dr
+ BoutRnmq

]
r=rn

= 0 (A.12)

Multiplying (A.11) by rnRnmq(r = rn) and (A.12) by
rnRnmp(r = rn) and subtracting,

Aout

[
knrRnmq

dRnmp

dr
− knrRnmp

dRnmq

dr

]
r=rn

= 0 (A.13)

Now, we consider three different cases: (a) Aout �= 0 and
Bout �= 0, (b) Aout �= 0 and Bout = 0, (c) Aout = 0 and Bout �= 0.

For cases (a) and (b), Eq. (A.13) reduces to[
knrRnmq

dRnmp

dr
− knrRnmp

dRnmq

dr

]
r=rn

= 0 (A.14)

For case (c), Eqs. (A.11) and (A.12) imply that Rnmp(r =
rn) = 0 and Rnmq(r = rn) = 0, respectively. Hence, Eq. (A.14)
is also true for case (c).

Similarly, it can be shown that[
k1rR1mq

dR1mp

dr
− k1rR1mp

dR1mq

dr

]
r=r0

= 0 (A.15)

Thus, in view of Eqs. (A.14) and (A.15), Eq. (A.10) yields

(
λ2

1mp − λ2
1mq

) n∑
i=1

α1ki

αi

ri∫
ri−1

rRimpRimq dr = 0 (A.16)

Since, for p �= q,λ2
1mp − λ2

1mq �= 0 therefore

n∑
i=1

ki

αi

ri∫
ri−1

rRimpRimq dr = 0 (A.17)
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